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Propagation, Attenuation, and Dispersion Characteristics

of Inhomogeneous Dielectric Slab Waveguides

EDWARD F. KUESTER, STUDENT MEMBER,

Absfracf—A numerical method based upon invariant i~bedding

and the transverse irnpedahce concept is applied to the problem of

calculating various properties of inhomogeneous slab waveguides.

The approach appears not only to be rapidly convergent but is also

capable of giving arbitrary accuracy. for any given mode. In par-

ticular, some interesting properties of a class of asymmetric profiles

are pointed out, relating to dkcussions of 10SSYstructures, temporal
pulse distortion, and spatial broadening.

I. INTRODUCTION

RECENTLY, some interest has been given to surface-

wave modes guided by various inhornogeneous di-

electric structures for use in optical communication and

processing systems. Various transverse per&ttivity dis-

tributions have been used or proposed to improve delay

distortion and radiation loss in dielectric wa~eguides over

what is attainable in homogeneous structures [1], [2],

In the case of a single dielectric waviguide, analytical

solutions are possible only for a few specific permittivity

profiles in simple geometries [3], [4]. Asymptotic methods

can also be applied in certain limiting cases [5], [6, pp.

193–215]. In general, however, the problem can only be
solved numerically.

In this work, the properties of an inhomogeneous di-

electric slab will be studied as a simple model of more

realistic inhomogeneous structures. The slab considered is

diagramed in Fig. 1. The boundary regions 1 and 2 are

homogeneous and characterized by the constant permit-

tivities CI (for x > O) and ,2 (z > d), respectively. The

slab, which lies between O ~ x ~ d, has a dielectric con-

stant which is an arbitrary function e(z) of z on this

interval, subject to, the restrictions that e(x) ~ to and

only a finite number of discontinuities be allowed. All

media have permeability p. and are uniform and of infinite

extent in the plane perpendicular to the x axis. We
identify the 2 direction as the direction of propagation so

that d/i)y -0 for all quantities involved.

In a sourceless region, the fields are assumed to have

a tand z dependence of exp [j (d — @z)], where B is a yet-

undetermined axial propagation constant. We have for

a TE wave
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Fig. 1. Geometry of the problem.
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and for a TM wave

where k’ = Wzpoc. At points where c(x) is discontinuous,

the tangential fields (EV,H8,HU,EZ) are required to” be

continuous.
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The numerical approach most often taken [7]-[9] is to

approximate the inhomogeneous profile by a finite number

of homogeneous slabs and to determine the modal charac-

teristics from a system of simultaneous equations obtained

from the wave solutions within the layers and the boundary

conditions at the interfaces. Another method, using Hill’s

functions, has been implemented by Casey [10], but it

ultimately is also an approximation since calculation of an

infinite determinant is required, to be done numerically by

suitable truncation. Marcuse [11] has used a kind of

combination of these two approaches, approximating the
profile by a piecewise linear one, and obtaining solutions

within the linear sections in terms of Hankel functions of

order one-third. In any of these methods, many layers (or

terms of the determinant) maybe used in a time-consum-

ing solution without any satisfactory criterion for deter-

mining how many might be required to obtain a given

accuracy.

In this paper, a different method, based upon the in-

variant imbedding principle and utilizing the transverse

impedance concept, is developed to analyze the modal

characteristics of dielectric slabs with arbitrary permit-

tivit y profiles. A first-order Ricatti differential equation

for the impedance (or admittance) is formulated and

numerically integrated across the slab using a fourth-order ~

Runge-Kutta method with error estimation. The value of b

of each propagating mode is then adjusted to satisfy the

transverse resonance condition independently. It appears

that th~s approach is not only rapidly convergent and

highly accurate but can also provide useful insight into

the design of dielectric waveguides.

The method will be derived for a lossless slab, then

extended in a straightforward manner with the help of

a perturbational formula to include guides with small

loss. Finally, the propagation of pulses in inhomogeneous

slabs will be investigated.

II. LOSSLESS SLABS

A. Formulation of the Modal Equation

We consider the surface-wave modes of the structure of

Fig. 1 to be forward traveling and of arbitrary amplitude,

which we will suitably normalize. We introduce the

normalized quantities

v = /3/iko W=kox

where ko = co(Poeo)1[2and let e, = e(z) /to, which allows us

to write (1) and (3) with a single notation to cover both

TE and TM modes.

-(dl

)
—If(w) +

dW K(W) dW
!g# j(w) = o (5)

where -Y2(W;V) = c, — J12,and K(W) and f(W) are given
in Table I. Calling the boundary points WI = O and

Wz = k~, we can express the solutions of (5) in regions

(1) and (2) as

TABLE I

PARAMICTER DEFINITIONS FOR TIZ AND T.~ WAVES

EY@.Q

f(w)

f’ (w)

‘1

‘2

R(w)

s (w)

TE—

‘Y

‘hoHz

1

1

-1

jEy/(noHz)

-jnoHz/Ev

TM—

‘Y
jcrEz/no

er

cr(wl)/cr
1

-er(w2)/s=
2

-jn ~Hy/E z

jE%/(nOHy)

fI = AI -p D’l(w – WJI, W<wl

fz = .42exp [–rz(w – lV2)], w :> W2

where I’~ = -t (V2 — ~,,) 112>0, i = 1,2, assuring that the

fields are exponentially decaying away from the slab, if

V2> +<, i = 1,2. At points of discontinuity y of e,, we must

have tangential field components continuous; this is

equivalent tcl requiring that j(W) and Y(W) /K ( W) be

continuous. This gives rise to the boundary conditions

j’ (wj) = ~irif( wi), i = 1,2 (6)

where the ri are given in Table I. Equations (5) and (6)

together constitute a two-point boundary/eigenvalue prob-

lem for the normalized propagation constant v.

We now make us of a polar coordinate transformation

due to Priifer [12] by defining two new functions: e ( W),

the phase function and p ( W), the amplitude function:

j(W) = P(W) sin 6(W)

j“’(w)/K(w) = j(w) Cos e(w) (7)

which are uniquely defined if P >0 and O < El( WI) < T

are specified. In addition, 0 and p are continuous regard-

less of discontinuities in e,.

Substituting (7) into (5) gives

“(w)“(WT2:(W)F(W)-“:%)1}‘8)

e’(w) = K(w)cos’e(w) +
-p( W;v)

K(W)
sin%(W) (9)

and the boundary conditions become

0( WI) = arccot (girl), 0< @(WJ < *T (lOa)

9( W2) = arccot (g2r2) + pm, *7r < arccot (q2r2) < T

(lOb)

where gi = ri/K ( WJ, i = 1,2, and P is (as yet) an arbi-
trary integer. The restrictions on the ranges of the inverse

cotangents come from the assumptions made for the

uniqueness of 0, as well as requiring that I’1 and J7zbe

positive.



100 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1975

If we denote by O(W;V) thepartictdar solution of (9)

subject to the initial condition (lOa), the boundary con-

dition (lOb) gives us the modal characteristic equation

P.(v) =0 (11)

where the characteristic function PP(v) is given by

PP(v) = e(w2;v) –arccot (Q2172)–m (12)

such that the root v of (11) is the propagation coefficient

of the surface-wave mode corresponding to the integer p.

B. Maximum Numb- of Propagating Surjace-Wave Modes

To examine the behavior of PP (v), it is convenient to

define a function x( W;V) to be de ( W;V) /dv so that

X’(w;v) = –2
{

p’(w;v)

‘(W;V) + II(VW) }
Sinze(w;v) .

p(w;v)

(13)

In the last expression we have denoted by D( W ;v) the

solution of (8) which satisfies the condition

The initial condition for x from (10a) is

X(wl;v) = – ~
ql

rl 1 + ~?rlz”

. .
p(w;v) = 1.

(14)

Using the transformation x = ~/P’, we can show that

v

X(w;v) = –
{

gl 1

P2( W;v) rl 1 + qlzrlz

+ 2L,~(t) IwP2(’i?) s~2e(g;v) dt .
(15)

If v > ~~in = max { (e,l) l/z, (c.,) 112), then I’1 and rz are

both positive and real, and in particular x( W;v) must

then be negative for all W on the interval [WI, WJ and

all v > v~i.. This implies that

e(W2;Vmin) 2 e(w2;v)

for all v > u~in, and furthermore, since for each p the

boundary condition ( 10b) is an increasing function of V,

the characteristic function PP (v) is strictly decreasing for

v > v~i.. Thus the integer

pm= = int [PO(Vmin) /m]

where ‘ ‘int” denotes the truncation or 1‘greatest integer)’

function, gives the largest value of p for which (lOb) can
be satisfied (see Fig. 2).

If we further denote

v~~ = (er~J 1/2 = max [c,(z) ]lIz
O<x<d-.

and suppose that v > v~~x, then 72( W;v) is negative

throughout the slab. Thus if 9 is to have a trajectory

which crosses any of the lines 6 = (n + 1/2) ~, n an

integer, then the slope at the point of crossing must be

from (9) :

e’ s ~2(w;v)/K(w) <0

t t
477–

/’~ ‘]

!,=3 :
0
t=

37r –
~p=? ~

: #

2?7-

V=vmin

1

INCREASING u

~p=, ~:

L
o

?7—

I,=o ~

lT/2 — — __________________
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V ‘Vmax

w, w? w

Fig. 2, Dependence of C)(W) and the boundary conditions on the
parameter v. All arrows denote the direction of increasing v.

but since 0( W,) is less than 7r/2 to begin with, all possible

trajectories of e are bounded above by r/2. In a similar

manner, if a () trajectory is to cross the line e = O, we

must at the crossing point have

e’ = K(w) >0

but since F3( WJ >0, all trajectories of 9 are bounded
from below by O. Thus for all v > v~ax, O < 0( WZ;V) <

3r/27 and since no value assumed by the boundary condi-

tion ( 10b) falls within this range, no eigenvalues may

exist for v > Vmax. Thus the only solutions of (11) will

correspond to p = 0,1,. . . jpmax and p~~x is thus the order
of the highest order propagating mode. For each p, since

j(W) has nodes when 0 is an integer multiple of r, an

examination of Fig. 2 shows that exactly p such nodes

will exist; consequently, the corresponding solution of

(11) will be precisely the TEP (or TM,) node.

We further note that many other properties of the

characteristic function are also obtainable from the

behavior of x and e. In particular, an important corollary

to these properties is that an asymmetric waveguide with

el # e must posses a nonzero cutoff frequency, even for

the TE, and TMO nodes, as we show in [13]. This property

turns out to have many interesting consequences as will

be discussed later.

C. l’ransmi8sion-Line Model

If we make the further transformations [14]

R(W) = tan e(w) = K(W)f(W)/j’(JV)

s(w) = d e(W) = fl(W)/[K(W)f(W)l (16)

then, from Table 1, it can be seen that R and S are a

normalized wave impedance, and its reciprocal, a nor-

malized wave admittance, the precise correspondence

depending upon whether TE or TM nodes are being con-

sidered. It is easy to show from (9) that

s’(w) = –K(w)s’(w) – ‘y2(w;v)/K(w) (17)

R’(W) = K(W) + -y2(W;v)R2(W)/K(W) (18)
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with initial condition from (lOa):

S (WJ = [R (WJ ]–I = @l. (19)

Equations (17) and (18) are Ricatti equations, which

have appeared in many connections with wave propaga-

tion problems [6, pp. 215–233],[15] – [17]. It is, in fact,

easy to show that within a layer of constant permittivity

the solution to (17) is

(20)

where

7i = [I’z ( W;v) ]112 = (c,; — v2) 112

K, = K(W) A’i = S(W.i;V)

and C,i is the relative permittivit y of the layer, and W; is

any point in the layer, usually one of its boundary points.

Equation (20) is the well-known impedance transforma-

tion for transmission lines, if we identify –j-yJKi as

characteristic impedance, Si as input impedance, and Y;

as phase constant. If we now regard the inhomogeneous

slab as the limiting case of a sequence of piecewise constant

layers” whose thickness becomes infinitesimal, we may

regard (17) and (18) as describing a nonuniform trans-

mission line, and the boundary conditions S ( WJ = qlI’1

and S (W.J = ~zrz as terminating impedances, for w~lch

the eigenvalues v represent a resonance condition between

the line and its terminations.

D. Numerical Scheme for Determining v

To solve the problem numerically, assume for the

moment that o ( Wz ;v) and x( W ;v) are somehow known

as functions of v (we shall return to the question of how

this is done later). Then we need to find the zero of

Pp (v) for the pth mode for each p between O

Since

P,’(v) = X( W2;V) + ~ *2
r2 1 + ~2W2z

and ~max.

(21)

we might attempt a solution by Newton)s method; suc-

cessively approximating the pth root v = V(PJ by the

formula

Vn+l(p) = Vn(p) – Pp (Vn) /P’ (Vn) (22)

where v.(P) is the value of v for the nth iteration. As is

well known, unless VOis initially close enough to V(PJ, this

method may fail to converge. We thus modify Newton’s

method for this case as follows. Since PP’ ( v) is negative

] the correction term in (22) ison the interval [v~ in,v~ ~X ,

always of the correct sign. Thus at any stage of the proce-
dure, an upper bound Vu (at most, vm,.) and a lower bound

vz (at least, Vmin) are available [12]. So if for some w(P),
V.+ltp) from (22) falls outside [vmin)vmax], instead of a step

in Newton’s method, a bisection step is performed:

Vn+l(p) = (Vn(p) + Vu)/2 or (VZ+ Vn(p) ) /2
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Fig. 3. Modification to Newton’s method. (a) .1 f~om Newton’s
method overshoots v~,x. (b) VIobtained from blsectioll.

according as the correction term from Newton’s method

is positive or negative in sign. At the same time vz or VU,

respectively, is reset to VntPJ, so that the effect is to

provide at least bisection-method convergence until the

v.(P) is close enough that Newton’s method (with its

quadratic convergence) takes over, finding V(P) to a

specified accuracy in a minimum of computing time, This

procedure is illustrated in Fig. 3 for a typical PO (v) curve.

To return to the task of evaluating o ( Wz ;v), we may

calculate R and S from (17) and (18) to obtain 61without

the necessity of many time-consuming trigonometric func-

tion evaluations. Since R and S exhibit poles at O =

(n+ 1/2) ~ and (1 = mr, respectively, by alternating

between (17) and (18) so as to be dealing with R when S

is near a pole and vice versa we may avoid poles and

large values of R and S altogether [14]. To recover the

multiple of r in 9 which is lost in (16), we note that S

has only simple nonrepeated poles at mr, so that if m poles

of S (that is, zeros of R ) are encountered during a solution

of (17) and (18), then

(I(W2) = m7r + arccot S(W2)

where O S arccot S < r is the correct reconstruction of 0.
Since also x( W, ;v) is required in the Newton’s method

and since from (13) and (8) we have

x’(W;V) = {[T2(W;V)/K(W) – K(W)] 02S(W;V)X(W;V)

– 2v/K(W) }/(1 + S2(W;V)) (23)
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Fig. 4. Asymmetric permittivity profile of width d with cosinusoidal

transition of width w.
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Fig. 5. TE modes for an asymmetric profile with eosinusoidal
transition. .,, = 1.50, ,., = 1.00, e,~sx = 1.53, d = 4 x 10-6
w/d = 0.2, &i./kO = 1.225. (a) Propagation constant. (b) Group
velocity.
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Fig. 6. TE modes for an asymmetric profile with cosinusoidal
transition. e,, = 1.50, c,, = 1.00, ,,max = 1.53, d = 4 x 10–6,
w/d = 0.4, &iJkO = 1.225. (a) Propagation constant. (b) Group
velocity.
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Fig. 7. TEij mode cutoff value of k,d versus c,, for a uniform asym-
metric profile (w = O). e,l = 1.50.

we can compute x (WZ ;v) in parallelwith (17)and (18)

which also requires no trigonometric function evaluations.

To obtain an error estimate for R and S (hence, even-

tually on V(PJ), a fourth-order Runge–Kutta method with

a good error estimator [18] was chosen to numerically

integrate the Ricatti equations (17) and (18). This estimate

allows the step size to be adjusted automatically to main-

tain the truncation error at each step at an approximately

constant preset value. In this way a definite overall error

estimate is obtained, whereas conventional approxima-

tions by piecewise uniform slabs have no way of determin-

ing what errors are involved or how varying layer widths

affects these errors.

E. Numerical Result for an Asymmetrical Slab

As mentioned previously, asymmetric structures must

possess nonzero cutoff frequencies for TE, and TMO

modes. In Fig. 4 is shown such a structure, and in Figs. 5

and 6 are shown dispersion curves and group velocity

curves for the TE modes of this structure when w = 0.2d

and 0.4d, respectively. (TM modes were found in all

cases to differ only very slightly from the TE modes and

are not presented here. ) It is of particular interest to note

that the group velocity curves for the two lowest order

modes possess an intersection point in the case w = 0.2d
whereas this intersection has vanished for the case w =

0.4d. In fact, as w/d was varied from O to 1, the inter-

section point moved up in frequency until it disappeared

at about w/d = 0.3, and the group velocity curves move

farther apart as w/d approaches 1. This suggests that two-

mode operation could be obtained at this intersection

point with essentially only single-mode type distortion

of signals, which is almost always negligible for practical

purposes (see the following and [19]). It is conceivable

that in the case of a dielectric waveguide with a diffused

boundary, the actual diffusion length can be utilized for

optimum multimode operation.
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For w = O, the dependence of the cutoff frequency of

the TEO mode upon the degree of asymmetry was studied

(Fig. 7). The extreme sensitivity of this dependence near

symmetry suggests that in actual waveguides, the sym-

metry should be closely controlled; otherwise in single-

mode operation, a slight asymmetry may produce (pos-

sibly intentionally) an effective ‘(cutoff frequency” near

the frequency of operation, so that the guided fields may

radiate into the surrotinding medium in the vicinity of

the asymmetry. This asymmetry will also be seen to have

a large effect upon lossy guides in the next section. We

present results for other lossless profiles in [13].

III. LOSSY SLABS

When some or all of the media of the slab structure are

allowed to be 10SSY, the propagation constants have

imaginary parts which cause the modes to be attenuated

as they propagate. Previous treatments have been limited

to homogeneous structures [21], [22]. In [20], we extend

the present method to Iossy inhomogeneous structure of

loss tangent up to about 10-3, by means of an initial

estimate of V(PJ (now complex) provided by a perturba-

tional formula making use of the fields of a corresponding

Iossless guide [23]. The following formula is obtained for

a small perturbation Ac, ( W) in the dielectric constant

(in general, complex) for TE modes:

(24)

with a similar, though more complicated, expression hold-

ing for TM modes. Here v and V. are the perturbed and

unperturbed propagation coefficients, respectively, and

E,, is the field in the unperturbed guide. If we stipulate

that Ae is constant in regions 1 and 2, the portions of the

integrations in W < WI and W > Wz may be done in

closed form, and only a numerical integration across the

slab need be done, with Eg. obtained from previous

relations.

For the asymmetric permittivity profile of Fig. 4 with

the loss profiles shown in Fig, 8, plots of the attenuation

coefficient are given in Figs. 9 and 10 (the propagation

constants remain essential y unaffected for loss tangents

< 10–3). It is seen that the highest attenuation occurs

when the fields are most highly concentrated in the

region (s) of most loss. This is consistent with the results

of [22] for homogeneous slabs. In Fig. 10, it is demon-

strated that the attenuation characteristic may be altered

by placing the maximum loss at other than the point of

maximum dielectric constant. In principle one could
produce almost any desired attenuation characteristic by

adjusting the loss profile in this manner. It might prove

useful, for instance, as a means of attenuating unwanted

modes, but more practically, since loss in any material is

inevitable, it merely serves to show that there are regions

where it is least critical as to how much loss is present.
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Fig. 8. Loqs profiles used with permittivity profile of Fig. 4.
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—
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Fig. 9. ‘t’E mode attenuation coefficients for asymmetric profile
with cosinnsoidal transition, loss profile Fig. ~(a). e,l = 1.50,
6,2 = 1.00, C:,mm== 1.53, $~i. = 0.0005, ~tn.x = 0.001, d = 4 X
10-6 m, w/d = 1.0.
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Fig. 10. TE mode attenuation coefficients for asymmetric profile
with cosinusoidal transition, loss profile Fig. 8(b). c,I = 1.50,
+2 = 1.00, Gm.x = 1.53, &li. = 0.0005, &l*x = 0.0015, d = 4 x
10-s m, w/d = 1.0.

To pursue thiis point further, we again let w = O and

vary the extent of the asymmetry of the profile. In

Figs. 11, 12, and 13, this asymmetry is plotted against

the attenuation coefficient for the loss located in region 1,
the slab, and regicm 2, respectively. As Re c., ranges be-

tween 1.00 and 1.50, the attenuation decreases somewhat
for the case where loss is assigned to region 1, increases

by an order of magnitude for the loss in the, slab, and by

more than two orders of magnitude when the loss is in

region 2. The field plots of an asymmetric slab given in
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Fig. 11. TEa mode attenuation coefficient versus e,, for a uniform
asymmetric profile (W = 0)..cn = 1.50, ermx = 1.53, ~od = 8>
loss of I Imfi, l = 10-Ainreglonl.

-6 L-- ~
I.0

Re ●,2

Fig. 12. TE, mode attenuation coetlicient versus +,for a uniform
asymmetrw profile (w = O). c~l = 1.50, Cma, = 1.53, kod = 8,
loss of \ Imc, l = 10-4 in slab.
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Fig. 13. T13u mode attenuation coefficient versus c,, for a uniform
asymmetric profile (UJ = O). c,, = 1.50, <~= = 1.53, hod = 8,
loss of ]Ime, l = 10-4inregion2.
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Fig. 14, Field plots of T13, mode normalized to Ey = 1 at W =

IV, forunifor masymmetri cprofde(,w = 0).+, = 1.50, 6,2 = 1.00,

erW.*Z = 1.53.

Fig. 14show that at W = Wzthefield amplitude relative

to that at W = WI can vary widely with the proximity

to the cutoff frequency. It will be appreciated that similar

disparity is not possible in a symmetric structure. This

effect, which is most pronounced near cutoff, can beheld

accountable for the wide variations in attenuation coef-

ficient caused by variation in 6,2 (which is in a sense

equivalent for fixed Iw3, to moving ?cOdrelative to cutoff).

It is therefore seen that in certain configurations the

waveguide attenuation depends quite strongly on guide

parameters not directly connected with the loss mecha-

nism; rather than changing the amount of loss, this is

accomplished by moving the field pattern r~lative to the

locations of the losses.

IV DISPERSION IN SLAB WAVE GUIDES

A. Temporal Dispersion

In principle, when one has found (either analytically or

numerically) the dispersion characteristic (i.e., @ as a

function of W) for a particular waveguide mode (we

ignore the problems involved with multimode propaga-

tion, and refer the reader to [19]), one has solved the

problem completely, since an arbitrary signal propagating

down the guide in that mode maybe analyzed using stand-

ard Fourier transform techniques in the frequency domain,

In practice, however, one must nearly always iesort to

approximate methods. Kapron and Keck [24] have

treated the propagation of a “quasi-monochromatic”

pulse with Gaussian envelope (that is, of very narrow

bandwidth) on an optical waveguide by a widely used
method, but one whose limitations are not always pointed

out. Subject to these limitations (see [29]) a Gaussian

input pulse of width a is output (attenuated and with

both group and phase delay) as a Gaussian pulse of width

b = [a02 + (ho’’L/aO) 2]”2 a? = az + ~cro”L.

Here the propagation constant D(u) = h (co) – ( l/2)~a (~),

with a(u) and h(u) both real and positive for OJ> 0,

a subscript zero indicates evaluation at the carrier fre-

quency COO,and the primes indicate differentiation with
respect to w If I (1/2) ao” I << I ho” I (which was always

true by at least a factor of 10 in the examples we studied

[20]), then the length Lo needed to achieve 10-percent
pulse broadening is appro~mately
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Wepresen tin~20]plot so fh’’(o) anda’’(u) forvarious

lossless and 10SSYinhomogyneous slabs, and in all of these,

2\h” I = 10-Z4s2/m was not exceeded. For unacceptable

transmission criterion of 10-percent broadening, or roughly

AO = 1/2 I ho” 1,a minimum pulse width of a = 3 X 10-11s

over a distance L = 1 km is pmsible-corresponding to

a pulse rate of 30 X 109 pulses/s. At L = 1 m, the maxi-

mum pulse rate has already risen to 10IZ pulses/s, so that

the broadening attributable to the waveguiding structure

for a single mode is unimportant for integrated optics, and

only marginally important for long fiber guides.

Whenever a Iossy structure was investigated, it was

found that for a pulse to be broadened noticeably (say

10 percent) it was necessary for it to propagate such a

long distance that it was essentially attenuated out of

existence. Since in low permittivity contrast guides, the

frequency dependence of the media themselves is much

more important for single-mode pulse dispersion than the

contribution from the waveguiding structure [28], one

may use a simple atomic resonance model for this frequency

dependence (as in [25] for example), again under narrow-

bandwidth assumptions on the signal, to draw the same

conclusion in a more general situatfon. We present a more

detailed discussion of this point in [29].

Recently, a permittivity profile has been proposed [27]

which seems to permit partial cancellation of the material

dispersion by the structural dispersion; however, in view

of the more serious attenuation and multimode distortion

problems, this seems to be of largely academic interest.

B. Spatial Dispersion

Throughout this analysis, it has everywhere been as-

sumed that guide properties and fields were invariant in

the y direction. Since no real structure satisfies these con-

ditions, we have analyzed the slab primarily as a model for

more realistic thiee-dimensional structures. But recently,

structures closely approximating slabs (i. e., with very

large y dimensions) have been increasingly employed as

waveguides in their own right. Thus it is no longer realistic

to assume fields of infinite extent in the v direction, and

it becomes more important to determine the behavior of

fields localized ifi this dimension on a slab.

It is well known [30~ that a field which has a Gaussian

spatial distribution (in thk case, in the y direction) of

characteristic width a = w/@, where w is the commonly

defined half-width of the Gaussian beam, is broadened

according to the formula

a(z) = a~l + I?4]*/2 (25)

where 6 = (or) l/2/8a m (6z) 112/,8a is a measure of the
distance the signal has traveled. Thus for 6<<1, the signal
is essentially unchanged, whereas for 6>> 1, the broadening

is approximately linear:

a(z) = 2/Es.

These two limiting statements are true as well when the

idial signal is exponentially distributed [20~ (and it is

interesting to note that the diffracted field for 8>>1 is

no longer exponential but Lorentzian). In fact, this typ6

of dependence on the parameter & is a quite general

property of signals’ with a recognizable characteristic

width a [26-].

‘I’he funciion (25) is minimized when ~ = 1 [that is

a =- (z/~) 1/2] and takes the value a@ at this point. Any

wider or narrower initial signal gives a wider output signal

at z. Thus if a detector with an effective acceptance width

of alti is given, a “dispersion length” (or “diffraction

length”) L can be given as L = @a12, beyond which a

significant portion of the signal will be lost. To give some

typical numbers, suppose @ = 10’ m-l and al = 10–8 m.

Then L = 10 m, which is relatively large for integrated

optics considerations. Howeverj reducing al by a factor

of 10 to 10-4 m reduces L to 10 cm, at which point spatial

broadening begins to be of more serious concern.

V. CONCL~SION

The propagation characteristics of inhomogeneous dl-

electric slabs have been discussed. It was found that an

asymmetric profile with a transition region exhibited

extreme sensitivity y to the degree of asymmetry present in

the structure, and that for certain values of transition

region width, two-mode operation at a single group velocity

was possible. Loss profiles have also been studied, and it

appears possible in nonsymmetrical structures to adjust

attenuation by varying essentially nonloss-related param-

eters, in some cases over a very broad range. With relation

to temporal pulse distortion, it is found that in nearly all

practical cases, attenuation will be a more serious con-

sideration than will single-mode broadening of the pulse.

Finally, a criterion is given for the use of slablike structures

for propagation of narrow-beam signals which suffer spatial

dispersion in such guides.
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Abstract—The rourid dielectric waveguide exhibits a surprising

variety of characteristics that are not accurately inferable from the

slab model. The forceful effort of recent years has grately extended

the knowledge of tI+ese structures and added new and exciting

modifications. An attempt to unify these results in a simplified

picture is made. Specific phenomena relevant to optical fiber design

and fabrication are then brought into focus. Some of the problems

discussed are cross sectional loss variations, various core index

profiles and the tolerances required in their preparation, the neces-

sary cladding hickness, directional changes, and sources of mode
coupling affecting signal distortion and loss.

I. INTRODUCTION

T HE LAST few years have seen a rapid increase both

in technological know-how and theoretical under-

standing of optical fibers and, along with it, a new variety

of fiber structures. At the same time, the issue of ma-

terial loss, which had barred fibers from the communica-

tions field longer than necessary, was so convincingly
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solved that other aspects are now becoming a prime con-

cern of optical communications research. This then seems

to be a good time to take stock, to organize the knowledge

gained, and to assess the available options. Accordingly,

a great number of review articles have appeared in a rapid

sequence all over the world. To name only the most recent

in the order of their appearance, there is an article by
Maurer [1] addressed mainly to the technology of fiber

preparation. Opto-Electronic.s devoted its July and Septem-

ber issues of 1973 to the subject of fiber optics featuring

reviews of the state of the art in Britain [2] and Germany

[3]. An article by Ohnesorg~ [4] advanced some of the

less conventional ideas of communication systems appli-

cation for optical fibers. lliller et al. [.5] have prepared

a very comprehensive review of the current knowledge

relating it to potential applications in the conventional

communications network. The quite different though

equally immediate potential of fibers for military applica-

tions becomes apparent in an article [6] which appeared

in thk TRANSACTIONS in December, 1973. The conven-

tional technology of fiber bundles [7] seems to be more


