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Propagation, Asttenuation, and Dispersion Characteristics

of Inhomogeneous Dielectric Slab W aveguides

EDWARD F. KUESTER, STUDENT MEMBER, IEEE, AND DAVID C. CHANG, MEMBER, IEEE

. Abstract—A numerical method based upon invariant imbedding
and the transverse imipedahce concept is applied to the problem of
calculating various properties of inhomogeneous slab waveguides.
The approach appears not only to be rapidly convergent but is also
capable of giving arbitrary accuracy for any given mode. In par-
ticular, some interesting properties of a class of asymmetric profiles
are pointed out, relating to discussions of lossy structures, temporal
pulse distortion, and spatial broadening.

I. INTRODUCTION

ECENTLY, some interest has been given to surface-
wave modes guided by various inhomogeneous di-
electric structures for use in optical communication and
processing systems. Various transverse permittivity dis-
tributions have been used or proposed to improve delay
distortion and radiation loss in dielectric waveguides over
what is attainable in homogeneous structures [17, [2].
In the case of a single dielectric waveguide, analytical
solutions are possible only for a few specific permittivity
profiles in simple geometries [ 3], [4]. Asymptotic methods
can also be applied in certain limiting cases [5], [6, pp.
193-2157. In general, however, the problem can only be
solved numerically.

In this work, the properties of an inhomogeneous di-
electric slab will be studied as a simple model of more
realistic inhomogeneous structures. The slab considered is
diagrammed in Fig. 1. The boundary regions 1 and 2 are
homogenous and characterized by the constant permit-
tivities & (for x > 0) and & (z > d), respectively. The
slab, which lies between 0 < z < d, has a dielectric con-
stant which is an arbitrary function e(z) of z on this
interval, subject to the restrictions that e(x) > ¢ and
only a finite number of discontinuities be allowed. All
media have permeability uo and are uniform and of infinite
extent in the plane perpendicular to the z axis. We
identify the ¢ direction as the direction of propagation so
that 8/dy = 0 for all quantities involved.

In a sourceless region, the fields are assumed to have
a ¢t and £ dependence of exp [j(wt — Bz) ], where 8 is a yet-
‘undetermined axial propagation constant. We have for
a TE wave
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Fig. 1. Geometry of the problem.
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where k% = o»®ue. At points where e(z) is discontinuous,
the tangential fields (E,,H.H,E.) are fequired to be
continuous.
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The numerical approach most often taken [7]-[9] is to
approximate the inhomogeneous profile by a finite number
of homogeneous slabs and to determine the modal charac-
teristics from a system of simultaneous equations obtained
from the wave solutions within the layers and the boundary
conditions at the interfaces. Another method, using Hill’s
funetions, has been implemented by Casey [10], but it
ultimately is also an approximation since calculation of an
infinite determinant is required, to be done numerically by
suitable truncation. Marcuse [117] has used a kind of
combination of these two approaches, approximating the
profile by a piecewise linear one, and obtaining solutions
within the linear sections in terms of Hankel functions of
order one-third. In any of these methods, many layers (or
terms of the determinant) may be used in a time-consum-
ing solution without any satisfactory criterion for deter-
mining how many might be required to obtain a given
accuracy.

In this paper, a different method, based upon the in-
variant imbedding principle and utilizing the transverse
impedance concept, is developed to analyze the modal
characteristics of dielectric slabs with arbitrary permit-
tivity profiles. A first-order Ricatti differential equation
for the impedance (or admittance) is formulated and

numerically integrated across the slab using a fourth-order

Runge—Kutta method with error estimation. The value of 3
of each propagating mode is then adjusted to satisfy the
transverse resonance condition independently. It appears
that this approach is not only rapidly eonvergent and
highly accurate but can also provide useful insight into
the design of dielectric waveguides.

The method will be derived for a lossless slab, then
extended in a straightforward manner with the help of
a perturbational formula to include guides with small
loss. Finally, the propagation of pulses in inhomogeneous
slabg will be investigated.

I1. LOSSLESS SLABS

A. Formulation of the Modal Equation

We consider the surface-wave modes of the structure of
Fig. 1 to be forward traveling and of arbitrary amplitude,
which we will suitably normalize. We introduce the
normalized quantities

v = ﬁ/ko

where ko = w{moen) 2 and let ¢ == e(z) /&, which allows us
to write (1) and (3) with a single notation to cover both
TE and TM modes.

W = kox

vH(W )

K (W) f(W) =0

f(W)) + (5)

& (L 4
dW \K (W) dW
where ¥ (W) = ¢ — % and K(W) and f(W) are given
in Table I. Calling the boundary points W, = 0 and

Ws = ked, we can express the solutions of (5) in regions
(1) and (2) as
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TABLE I
ParamuTeER DEFINITIONS FOR TE AND TM WAVES

Symbol TE ™
£(W) E, B,

L) > -
£' (W) =ingH, JegBa/mg
K(w 1 €

Ty 1 er(wl)/eIl

T2 -1 “Cr (WZ)/erz
R(w) 3Ey/ ngH,) -3ngH /8,
S (w) -jnOHz/Ey J'Ez/(noﬂy)

fi= Ayexp [Ti(W — W1) ], W< W,y
fo=Asexp [—Teo(W — W), W > W,

where T'; = -+ (%2 — &,)12 > 0,1 = 1,2, assuring that the
fields are exponentially decaying away from the slab, if
2> €, t = 1,2. At points of discontinuity of ¢, we must
have tangential field components continuous; this is
equivalent to requiring that f(W) and f/(W)/K(W) be
continuous. This gives rise to the boundary conditions

FWy) =rTif(Ws), =12 (6)

where the »; are given in Table I. Equations (5) and (6)
together constitute a two-point boundary/eigenvalue prob-
lem for the normalized propagation constant ».

We now make us of a polar coordinate transformation
due to Priifer [12] by defining two new functions: 0 (W),
the phase function and p(W), the amplitude function:

F(W) = o(W) sin 6(W)
7 WY /E(W) = p(W) cos 6(W) (7)

which are uniquely defined if p > 0 and 0 < O(Wy) <=
are specified. In addition, © and p are continuous regard-
less of discontinuities in e;.

Substituting (7) into (5) gives

(W) = sin26 (W) (W)
p o) = oo (22500 [y - 200 | ®

YWw) .
’ - 2 RS 2
O (W) = K(W)cos*0(W) + KO sin20 (W)
and the boundary conditions become
o(W;) = arceot (iT'1), 0 < O(Wy) <ir (10a)

0(W,) = arccot (¢:T'2) + pm,

(9)

ir < arccot (gol2) < =
(10b)

where ¢; = r.,/K(W,), + = 1,2, and p is (as yet) an arbi-
trary integer. The restrictions on the ranges of the inverse
cotangents come from the assumptions made for the
uniqueness of 4, as well as requiring that Iy and T be.
positive.
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If we denote by 6 (W) the particular solution of (9)
subject to the initial condition (10a), the boundary con-
dition (10b) gives us the modal characteristic equation

Py(v) =0 (11)
where the characteristic function P,(») is given by
P,(») = 6(Wyw) — arcecot (qal2) — prw (12)

such that the root » of (11) is the propagation coefficient

of the surface-wave mode corresponding to the integer p.

B. Maximum Number of Propagating Surface-Wave Modes
To examine the behavior of P,(»), it is convenient to

define a function x (W) to be 30 (W) /dv so that

o (Wp)

p(Wiw)

K(W) ; }
(13)

X (Ww) = ——2{ x(Wp)

In the last expression we have denoted by p(W ) the
- solution of (8) which satisfies the condition p(Ww) = 1
The initial condition for x from (10a) is
14 q1

x(Wip) = — T 1T gire”

Using the transformation x = ¥/p?, we can show that

(14)

by = ——r _fa_ 1
W) = = {n 1+ goTy

P (E;
+2f
w K
If » > vmin = max { (&)Y, (e)¥2}, then Ty and T, are
both positive and real, and in particular x(W;») must

then be negative for all W on the interval [W,W,] and
all v > vmin. This implies that

O (Waivmin) = (W)

for all v > vmin, and furthermore, since for each p the
boundary condition (10b) is an increasing function of »,
the characteristic function P,(») is strictly decreasing for
¥ > vmin. Thus the integer

Pmax = int I:PO(Vmin)/W:]

where “int” denotes the truncation or “greatest integer”
function, gives the largest value of p for which (10b) can
be satisfied (see Fig. 2).

If we further denote

sin?© (£;») dé} (15)

Vmax = (€ryax) ¥ = max [e.(z) ]2
0<LzLd
and suppose that v > vuax, then 42(Wj) is negative
throughout the slab. Thus if © is to have a trajectory
which crosses any of the lines © = (n 4 1/2)#, n an
integer, then the slope at the point of crossing must be
from (9):

0 = 2(Wu)/K(W) <0
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Fig. 2. Dependence of (W) and the boundary conditions on the
parameter ». All arrows denote the direction of increasing ».

but since 6 (W) is less than #/2 to begin with, all possible
trajectories of © are bounded above by /2. In a similar
manner, if a © trajectory is to cross the line © = 0, we
must at the crossing point have

=K(W) >0

but since 8(W,) > 0, all trajectories of © are bounded
from below by 0. Thus for all » > ymax, 0 < 8(Waypw) <
7/2, and since no value assumed by the boundary condi-
tion (10b) falls within this range, no eigenvalues may
exist for » > vnax. Thus the only solutions of (11) will
correspond to p = 0,1,+« Doz aNnd Prax is thus the order
of the highest order propagating mode. For each p, since
f(W) has nodes when 6 is an integer multiple of , an
examination of Fig. 2 shows that exactly p such nodes
will exist; consequently, the corresponding solution of
(11) will be precisely the TE, (or TM,) node.

We further note that many other properties of the
characteristic funetion are also obtainable from the
behavior of x and 6. In particular, an important corollary
to these properties is that an asymmetric waveguide with
& 7 & must posses a nonzero cutoff frequency, even for
the TE, and TM, nodes, as we show in [137]. This property
turns out to have many interesting consequences as will
be discussed later.

C. Transmission-Line Model
If we make the further transformations [14]
R(W) = tan 6(W) = K(W)f(W)/f (W)
S(W) = cot (W) = f'(W)/[K(W)f(W)] (16)

then, from Table I, it can be seen that B and S are a
normalized wave impedance, and its reciprocal, a nor-
malized wave admittance, the precise correspondence
depending upon whether TE or TM nodes are being con-
sidered. It is easy to show from (9) that

S W) = —KW)S(W) — v*(W») /K (W)
R'(W) = K(W) + v*(W»)RX(W)/K(W)

(17)
(18)
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with initial condition from (10a):

S(Wy) = [RW) T = quI's. (19)

Equations (17) and (18) are Ricatti equations, which
have appeared in many connections with wave propaga~
tion problems [6, pp. 215-2337],[157-[17]. It is, in fact,
easy to show that within a layer of constant permittivity
the solution to (17) is

ngiSi cos vs(W ~ W;) — visiny (W — W)
K; K;S;siny;(W — W;) + vicos v, (W — Wy)

(20)

S(Wi) =

where
7= AW I = (e — )10

Ki=KW) 8 =8Wy)

and ,, is the relative permittivity of the layer, and W; is
any point in the layer, usually one of its boundary points.
Equation (20) is the well-known impedance transforma-
tion for transmission lines, if we identify —jv./K; as
characteristic impedance, S; as input impedance, and ~;
as phase constant. If we now regard the inhomogeneous
slab as the limiting case of a sequence of piecewise constant
layers whose thickness becomes infinitesimal, we may
regard (17) and (18) as describing a nonuniform trans-
mission line, and the boundary conditions S(W;) = ¢;I
and S(W:) = ¢TI as terminating impedances, for which
the eigenvalues » represent a resonance condition between
the line and its terminations.

D. Numerical Scheme for Determining v

To solve the problem numerically, assume for the
moment that ©(Ws») and x(W ;) are somehow known
as functions of v (we shall return to the question of how
this is done later). Then we need to find the zero of
P,(») for the pth mode for each p between 0 and pmas.
Since

Py() = x(Wap) + — —L

et 21
T, 14 9221‘22 ( )

we might attempt a solution by Newton’s method, suc-
cessively approximating the pth root » = »® by the
formula

Vn+1(p) = »,P — Pp(Vn) /P/(Vn) (22)

where »,? is the value of » for the nth iteration. As is
well known, unless », is initially close enough to »®, this
method may fail to converge. We thus modify Newton’s
method for this case as follows. Since P,'(») is negative
on the interval [vmin,’max |, the correction term in (22) is
always of the correct sign. Thus at any stage of the proce-
dure, an upper bound v, (at most, ymax) and a lower bound
v (at least, vmin) are available [12]. So if for some va®,
V1@ from (22) falls outside [vmin,vmax ), instead of a step
in Newton’s method, a bisection step is performed:

i@ = (1@ + w)/2 or (vt »)/2
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Fig. 3. Modification to Newton’s method. (a) » from Newton’s
method overshoots vugy. (b) »1 obtained from bisection.

according as the correction term from Newton’s method
is positive or negative in sign. At the same time p; or »,,
respectively, is reset to »,®, so that the effect is to
provide at least bisection-method convergence until the
»,® is close enough that Newton’s method (with its
quadratic convergence) takes over, finding »® to a
specified accuracy in a minimum of computing time. This
procedure is illustrated in Fig. 3 for a typical Po(r) curve.

To return to the task of evaluating 0(Ws;v), we may
caleulate R and S from (17) and (18) to obtain 6 without
the necessity of many time-consuming trigonometric func-
tion evaluations. Since B and 8 exhibit poles at 6 =
(n+ 1/2)x and © = nr, respectively, by alternating
between (17) and (18) so as to be dealing with B when S
is near a pole and vice versa we may avoid poles and
large values of R and S altogether [14]. To recover the
multiple of x in © which is lost in (16), we note that S
has only simple nonrepeated poles at nw, so that if m poles
of S (that is, zeros of R) are encountered during 2 solution
of (17) and (18), then

O(W;) = mmr -+ arccot S(Ws)

where 0 < arccot S <  is the correct reconstruction of 0.
Since also x(Waj») is required in the Newton's method
and since from (13) and (8) we have.

X (W) = {[*(W»)/K(W) — K(W)]-28(W»)x(W»)
—/K(W)}/(1+ SH(Wyw)) (23)
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Fig. 4. Asymmetric permittivity profile of width d with cosinusoidal
transition of width w.
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Fig. 5. TE modes for an asymmetric profile with cosinusoidal
transition. eq = 1.50, €y = 1.00, €'max = 1.53, d = 4 X 108
w/d = 0.2, Bmin/ke = 1.225. (a) Propagation constant. (b) Group
velocity.
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velocity.
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we can compute x(Wsv) in parallel with (17) and (18)
which also requires no trigonometric function evaluations.

To obtain an error estimate for B and S (hence, even-
tually on »®), a fourth-order Runge-Kutta method with
a good error estimator [187] was chosen to numerically
integrate the Ricatti equations (17) and (18). This estimate
allows the step size to be adjusted automatically to main-
tain the truncation error at each step at an approximately
constant preset value. In this way a definite overall error
estimate is obtained, whereas conventional approxima-
tions by piecewise uniform slabs have no way of determin-
ing what errors are involved or how varying layer widths
affects these errors.

E. Numerical Result for an Asymmetrical Slab

As mentioned previously, asymmetric structures must
possess nonzero cutoff frequencies for TE, and TM,
modes. In Fig. 4 is shown such a structure, and in Figs. 5
and 6 are shown dispersion curves and group velocity
curves for the TE modes of this structure when w = 0.2d
and 0.4d, respectively. (TM modes were found in all
cases to differ only very slightly from the TE modes and
are not presented here.) It is of particular interest to note
that the group velocity curves for the two lowest order
modes possess an intersection point in the case w = 0.2d
whereas this intersection has vanished for the case w =
0.4d. In fact, as w/d was varied from 0 to 1, the inter-
section point moved up in frequency until it disappeared
at about w/d = 0.3, and the group velocity curves move
farther apart as w/d approaches 1. This suggests that two-
mode operation could be obtained at this intersection
point with essentially only single-mode type distortion
of signals, which is almost always negligible for practical
purposes (see the following and [197). It is conceivable -
that in the case of a dielectric waveguide with a diffused
boundary, the actual diffusion length can be utilized for
optimum multimode operation.
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For w = 0, the dependence of the cutoff frequency of
the TE,; mode upon the degree of asymmetry was studied
(Fig. 7). The extreme sensitivity of this dependence near
symmetry suggests that in actual waveguides, the sym-
metry should be closely controlled; otherwise in single-
mode operation, a slight asymmetry may produce (pos-
sibly intentionally) an effective “cutoff frequency’’ near
the frequency of operation, so that the guided fields may
radiate into the surrounding medium in the vicinity of
the asymmetry. This asymmetry will also be seen to have
a large effect upon lossy guides in the next section. We
present results for other lossless profiles in [13].

III. LOSSY SLABS

When some or all of the media of the slab structure are
allowed to be lossy, the propagation constants have
imaginary parts which cause the modes to be attenuated
as they propagate. Previous treatments have been limited
to homogeneous structures [217], [22]. In [20], we extend
the present method to lossy inhomogeneous structure of
loss tangent up to about 1073, by means of an initial
estimate of »@ (now complex) provided by a perturba-
tional formula making use of the fields of a corresponding
lossless guide [237]. The following formula is obtained for
a small perturbation Ae,(W) in the dielectric constant
(in general, complex) for TE modes:

1 +o0 400
v~ v+ o {( Ae Byt dW) / ( B,z dW)]
Vs —o0 —

(24)

with a similar, though more complicated, expression hold-
ing for TM modes. Here » and », are the perturbed and
unperturbed propagation coefficients, respectively, and
E,, is the field in the unperturbed guide. If we stipulate
that Ae is constant in regions 1 and 2, the portions of the
integrations in W < Wi and W > W. may be done in
closed form, and only a numerical integration across the
slab need be done, with E,, obtained from previous
relations. ‘

For the asymmetric permittivity profile of Fig. 4 with
the loss profiles shown in Fig. 8, plots of the attenuation
coefficient are given in Figs. 9 and 10 (the propagation
constants remain essentially unaffected for loss tangents
<10-%). It is seen that the highest attenuation occurs
when the fields are most highly concentrated in the
region (s) of most loss. This is consistent with the results
of [227] for homogeneous slabs. In Fig. 10, it is demon-
strated that the attenuation characteristic may be altered
by placing the maximum loss at other than the point of
maximum dielectric constant. In principle one could
produce almost any desired attenuation characteristic by
adjusting the loss profile in this manner. It might prove
useful, for instance, as a means of attenuating unwanted
modes, but more practically, since loss in any material is
inevitable, it merely serves to show that there are regions
where it is least critical as to how much loss is present.
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e = 1.00, try,, = 1.53, by = 0.0005, drgs = 0.0015, d = 4 X
10~ m, w/d = 1.0.

To pursue this point further, we again let w = 0 and
vary the extent of the asymmetry of the profile. In
Figs. 11, 12, and 13, this asymmetry is plotted against
the attenuation coefficient for the loss located in region 1,
the slab, and region 2, respectively. As Re e, ranges be-
tween 1.00 and 1.50, the attenuation decreases somewhat
for the case where loss is assigned to region 1, increases
by an order of magnitude for the loss in the slab, and by
more than two orders of magnitude when the loss is in
region 2. The field plots of an asymmetric slab given in
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Fig. 14 show that at W = W, the field amplitude relative
to that at W = W; can vary widely with the proximity
to the cutoff frequency. It will be appreciated that similar
disparity is not possible in a symmetric structure. This
effect, which is most pronounced near cutoff, can be held
accountable for the wide variations in attenuation coef-
ficient caused by variation in €, (which is in a sense
equivalent for fixed kod to moving kod relative to cutoff).
It is therefore seen that in certain configurations the
waveguide attenuation depends quite strongly on guide
parameters not directly connected with the loss mecha~
nism; rather than changing the amount of loss, this is
accomplished by moving the field pattern relative to the
locations of the losses.

IV. DISPERSION IN SLAB WAVEGUIDES

A. Temporal Dispersion

In principle, when one has found (either analytically or
numerically) the dispersion characteristic (ie., 8 as a
function of «) for a particular waveguide mode (we
ignore the problems involved with multimode propaga-
tion, and refer the reader to [19]), one has solved the
problem completely, since an arbitrary signal propagating
down the guide in that mode may be analyzed using stand-
ard Fourier transform techniques in the frequency domain.
In practice, however, one must nearly always resort to
approximate methods. Kapron and Keck [24] have
treated the propagation of a ‘“quasi-monochromatic”
pulse with Gaussian envelope (that is, of very narrow
bandwidth) on an optical waveguide by a widely used
method, but one whose limitations are not always pointed
out. Subject to these limitations (see [29]) a Gaussian
input pulse of width a is output (attenuated and with
both group and phase delay) as a Gaussian pulse of width

b= [aoz -+ (ho”L/ao)Zjllz a® = a? + %O[Q”L.

Here the propagation constant 8(w) = h(w) — (1/2)ja(w),
with a(w) and hfw) both real and positive for « > 0,
a subscript zero indicates evaluation at the carrier fre-
quency wo, and the primes indicate differentiation with
respect to w. If | (1/2)e’” | < [’ | (which was always
true by at least a factor of 10 in the examples we studied
[207]), then the length L, needed to achieve 10-percent
pulse broadening is approximately
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We present in [20] plots of b/ (w) and " {w) for various
lossless and lossy inhomogeneous slabs, and in all of these,
2R | = 107 s?/m was not exceeded. For an acceptable
transmission criterion of 10-percent broadening, or roughly
Ay = 1/2| hy' |, 2 minimum pulse width of @ = 3 X 10~s
over a distance L = 1 km is possible—corresponding to
a pulse rate of 30 X 10° pulses/s. At L = 1 i, the maxi-
mum pulse rate has already risen to 10" pulses/s, so that
the broadening attributable to the waveguiding structure
for a single mode is unimportant for integrated optics, and
only marginally important for long fiber guides.

Whenever a lossy structure was investigated, it was
found that for a pulse to be broadened noticeably (say
10 percent) it was necessary for it to propagate such a
long distance that it was essentially attenuated out of
existence. Since in low permittivity contrast guides, the
frequency dependence of the media themselves is much
more important for single-mode pulse dispersion than the
contribution from the waveguiding strueture [287, one
may use a simple atomic resonance model for this frequency
dependence (as in [25] for example), again under narrow-
bandwidth assumptions on the signal, to draw the same
conclusion in a more general situation. We present a more
detailed discussion of this point in [297].

Recently, a permittivity profile has been proposed [27]
which seems to permit partial cancellation of the material
dispersion by the structural dispersion; however, in view
of the more serious attenuation and multimode distortion
problems, this seems to be of largely academic interest.

B. Spatial Dispersion

Throughout this analysis, it has éverywhere been as-
sumed that guide properties and fields were invariant in
the y direction. Since no real structure satisfies these con-
ditions, we have analyzed the slab primarily as a model for
more realistic thiee-dimensional structures. But recently,
structures closely approximating slabs (i.e., with very
large y dimensions) have been increasingly employed as
waveguides in their own right. Thus it is no longer realistic
to assume fields of infinite extent in the y direction, and
it becomes moré important to determine the behavior of
fields localized in this dimension on a slab.

It is well known [307] that a field which has a Gaussian
spatial distribution (in this case, in the y direction) of
characteristic width @ = w/V2, where w is the commonly
defined half-width of the Gaussian beam, is broadened
according to the formula

a(z) = a[1 + §*]2

where § = (Br)Y2/8a =~ (82)"2/Ba is a measure of the
distance the signal has traveled. Thus for § << 1, the signal
is essentially unchanged, whereas for § 3> 1, the broadening
is approximately linear:

a(z) ~z/8a.

These two limiting statements are true as well when the
initial signal is exponentially distributed [20] (and it is

(25)
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interesting to note that the diffracted field for 6 > 1 is
no longer exponential but Lorentzian). In fact, this type
of dependence on the parameter 6 is a quite general
property of signals’ with a recognizable characteristic
width a [26].

The function (25) is minimized when & = 1 [that is
a = (z/8)2] and takes the value aV2 at this point. Any
wider or narrower initial signal gives a wider output signal
at z. Thus if a detector with an effective acceptance width
of a;V2 is given, a ‘“dispersion length” (or ‘diffraction
length”) L can be given as L = fSa?, beyond which a
significant portion of the signal will be lost. To give some
typical mumbers, suppose § = 10" m™ and a; = 10~% m
Then I, = 10 m, which is relatively large for integrated
optics considerations. However, reducing a1 by a factor
of 10 to 10~ m reduces L to 10 em, at which point spatial
broadening begins to be of more serious concern.

V. CONCLUSION

The propagation characteristics of inhomogeneous di-
electric slabs have been discussed. It was found that an
asymmetric profile with a transition region exhibited
extreme sensitivity to the degree of asymmetry present in
the structure, and that for certain values of transition
region width, two-mode operation at a single group velocity
was possible. Loss profiles have also been studied, and it
appears possible in nonsymmetrical structures to adjust
attenuation by varying essentially nonloss-related param-
eters, in some cases over a very broad range. With relation
to temporal pulse distortion, it is found that in nedrly all
practical cases, attenuation will be a more serious con-
sideration than will single-mode broadening of the pulse.
Finally, a criterion is given for the use of slablike structures
for propagation of narrow-beam signals which suffer spatial
dispersion in such guides.
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Propagation Effects in Optica| Fibers

. DETLEF GLOGE, MEMBER, 1EEE
(Inwvited Paper)

Abstract—The round dielectric wavéguide exhibits a surprising
variety of characteristics that are not accurately inferable from the
slab model. The forceful effort of recent years has grately extended
the knowledge of these structures and added new and exciting
modifications. An attempt to unify these results in a simplified
picture is made. Specific phenomena relevant to optical fiber design
and fabrication are then brought into focus. Some of the problems
discussed are cross sectional loss variations, various core index
profiles and the tolerances required in their preparation, the neces-
saty cladding thickness, directional changes, and sources of mode
coupling affecting signal distortion and loss.

I. INTRODUCTION

HE LAST few years have seen a rapid increase both
in technological know-how and theoretical under-
staunding of optical fibers and, along with it, a new variety
of fiber structures. At the same time, the issue of ma-
terial loss, which had barred fibers from the communica-
tions field longer than necessary, was so convincingly
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solved that other aspects are how becoming a prime con-
cern of optical communications research. This then seems
to be a good time to take stock, to organize the knowledge
gained, and to assess the available options. Accordingly,
a great number of review articles have appeared in a rapid
sequence all over the world. To name only the most recent
in the order of their appearance, there is an article by
Maurer [17] addressed mainly to the technology of fiber
preparation. Opto-Electronics devoted its July and Septem-
ber issues of 1973 to the subject of fiber optics featuring
reviews of the state of the art in Britain [27] and Germany
[3]. An article by Ohnesorge [47] advanced some of the
less conventional ideas of communication systems appli-
cation for optical fibers. Miller ef al. [5] have prepared
a very comprehensive review of the current knowledge
relating it to potential applications in the conventional
communications network. The quite different though
equally immediate potential of fibers for military applica-
tions becomes apparent in an article [6] which appeared
in this TransactiONs in December, 1973. The conven-
tional technology of fiber bundles [77] seems to be more



